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Abstract—Histopathology image analysis serves as the gold
standard for cancer diagnosis. Efficient and precise diagnosis is
quite critical for the subsequent therapeutic treatment of patients.
So far, computer-aided diagnosis has not been widely applied in
pathological field yet as currently well-addressed tasks are only
the tip of the iceberg. Whole slide image (WSI) classification is a
quite challenging problem. First, the scarcity of annotations heav-
ily impedes the pace of developing effective approaches. Pixelwise
delineated annotations on WSIs are time consuming and tedious,
which poses difficulties in building a large-scale training dataset.
In addition, a variety of heterogeneous patterns of tumor exist-
ing in high magnification field are actually the major obstacle.
Furthermore, a gigapixel scale WSI cannot be directly analyzed
due to the immeasurable computational cost. How to design the
weakly supervised learning methods to maximize the use of avail-
able WSI-level labels that can be readily obtained in clinical
practice is quite appealing. To overcome these challenges, we
present a weakly supervised approach in this article for fast and
effective classification on the whole slide lung cancer images.
Our method first takes advantage of a patch-based fully con-
volutional network (FCN) to retrieve discriminative blocks and
provides representative deep features with high efficiency. Then,
different context-aware block selection and feature aggregation
strategies are explored to generate globally holistic WSI descrip-
tor which is ultimately fed into a random forest (RF) classifier
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for the image-level prediction. To the best of our knowledge, this
is the first study to exploit the potential of image-level labels
along with some coarse annotations for weakly supervised learn-
ing. A large-scale lung cancer WSI dataset is constructed in
this article for evaluation, which validates the effectiveness and
feasibility of the proposed method. Extensive experiments demon-
strate the superior performance of our method that surpasses
the state-of-the-art approaches by a significant margin with an
accuracy of 97.3%. In addition, our method also achieves the
best performance on the public lung cancer WSIs dataset from
The Cancer Genome Atlas (TCGA). We highlight that a small
number of coarse annotations can contribute to further accuracy
improvement. We believe that weakly supervised learning meth-
ods have great potential to assist pathologists in histology image
diagnosis in the near future.

Index Terms—Deep learning, histology image analysis, weakly
supervised learning, whole slide images (WSIs).

I. INTRODUCTION

LUNG cancer is the leading cause of cancer death in both
men and women in the U.S. [1]. Appropriate treatment for

lung cancer patients primarily depends on the type of lung car-
cinoma, such as small cell lung cancer (15%) or nonsmall cell
lung cancer (85%) [2]. The most common nonsmall cell lung
cancer can be divided into several subtypes that are named
based upon the tumor cells, such as adenocarcinomas (ADCs)
and squamous cell carcinomas (SCs), as shown in Fig. 1. A
range of diagnostic tests can be used to diagnose lung cancer,
including chest X-ray, computerized tomography (CT), mag-
netic resonance imaging (MRI), and needle biopsy. Among
these approaches, histopathological image analysis serves as
the gold standard for lung cancer diagnosis.

Classification of carcinoma types and assessment of aggres-
siveness are essential for the following targeted treatment.
In the clinical practice, carcinoma is routinely identified by
experienced pathologists through checking of tissue slide
stained with hematoxylin and eosin (H&E) under a high-power
microscopy, which is a labor-intensive and time-consuming
task [e.g., it takes an experienced histopathologist about
15 min to half an hour to check one whole slide image
(WSI)], as it usually requires pathologists to look through large
swathes of normal tissue regions to eventually recognize the
malignant areas. In addition, lots of mimics share a similar
appearance to cancer regions, which should be distinguished
carefully. Therefore, automated analysis technique is highly
demanded in the pathological field, which could considerably
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Fig. 1. Examples of different types of lung carcinoma in each column,
including (a) SC, (b) ADC, (c) SCLC, and (d) NORM cases.

ease the workload, speed up the diagnosis, and facilitate the
in-time treatment.

During the last decade, the convolutional neural networks
(CNNs) have achieved astounding achievements in many
aspects of the medical imaging field, such as ultra-
sound [3], [4]; MRI [5], [6]; and CT [7], [8]. Also, lots of
histopathology image recognition tasks have been well studied
by researchers, for example, mitosis detection in breast cancer
histopathology images [9], [10]; gland instance segmentation
in colon images [11]; and nuclear atypia scoring for breast
cancer assessment [12]. However, these histopathology images
employed for research studies fall into the type of region of
interests (ROIs) [9]–[11], [13], which are deliberately selected
by experienced pathologists with a much smaller size (e.g.,
1000×1000) from WSIs. Patch-level labels or even pixelwise
annotation masks can be feasibly provided by pathologists
for designing the effective algorithms at the training phase.
Therefore, most of the approaches can be categorized into fully
supervised learning methods inherently.

With the advent of whole slide scanning techniques, dramat-
ically increasing interest has been shown on the WSI analysis
which is much more challenging than the ROI-level analy-
sis. For example, a gigapixel WSI contains more than billions
of pixels (e.g., 74 000 × 76 000) on the highest resolution
level, which poses great challenges to the image-level classi-
fication. Downsampling WSIs into thumbnails is not feasible
as lots of intrinsic information and fine details would be lost.
Alternatively, it is more reasonable to perform analysis on
small patches with fine details cropped from high-resolution
WSIs, which is similar to the ROI-level analysis, but in a
much larger scale as millions of patches should be taken into
consideration for the WSI analysis.

By and large, high-level tasks can be mainly categorized into
three branches: 1) tumor detection or segmentation; 2) can-
cer prognosis; and 3) carcinoma classification. As for the
tumor segmentation task, researchers tend to address this
problem through two steps, starting with candidate selection
and following tumor confirmation. Initially, CNNs served as
the patch-level classifier [14]–[20]. It aimed to select sus-
picion exemplars or candidates from WSIs. In this regard,
various deep networks (e.g., GoogLeNet [21], AlexNet [22],
and VGG-16 [23]) were evaluated for comparison [17]. In

contrast, Lin et al. [18] built a novel framework by leverag-
ing fully convolutional network (FCN) for efficient inference
while reconstructing dense predictions to ensure the detection
accuracy. Rich spatial information plays an important role in
tumor detection, and it has been explored in [19] and [24].
For instance, a 2D Long Short-Term Memory was utilized to
aggregate the context from a grid of neighboring patches [24],
while Bejnordi et al. [19] proposed a context-aware stacked
CNN to take advantage of the spatial information within WSIs.
Furthermore, a range of magnification levels of WSIs were
also considered to improve the performance [17], [20]. In
general, tumor confirmation is an indispensable part for accu-
rate detection among candidates. The normalized cumulative
histogram with percentile analysis [15] and connected compo-
nent features of WSI probability maps [15], [17], [18] were
widely utilized in the second-stage decision fusion model.
Handcrafted features, including the local binary patterns, HSD
color histogram, topological features (e.g., Voronoi diagram
and Delaunay triangulation), were also popular in [14], [19],
[24], and [25]. Random forest (RF), support vector machine
(SVM), and multilayer perceptron (MLP) [17], [18], [24]–[26]
were commonly used for making the final decision. These
fully supervised methods largely rely on careful annotations
of cancer regions.

Cancer prognosis based on WSIs is a hot research topic
which aims to assist clinicians in making early decision on
treatments in the context of access to patient’s histopathol-
ogy images. Currently, many approaches have been proposed
to provide more accurate survival predictions [27]–[30].
However, these methods depend on handcrafted features
extracted from manually selected ROIs whereas in lack of
the ability to learn discriminative patterns automatically from
WSIs. For instance, Yu et al. [28] and Luo et al. [29] uti-
lized the software CellProfiler to extract a huge number of
handcrafted features from annotated tumor regions and then
used a regularized machine-learning method for the top fea-
ture selection and cancer prognosis classification. In contrast,
Zhu et al. [31] obtained the survival prediction by utiliz-
ing the WSI-level labels only. Clustering was applied on
phenotypes of patches by K-means algorithm, followed by
the feature selection via CNN and feature aggregation for
final prediction. Although Wang et al. [32] successfully made
lung cancer survival prediction based on shape and bound-
ary features of tumor regions automatically detected by CNN,
it indeed requires large number of annotations to train the
detector.

Regarding the high-level WSI classification task [33]–[39],
due to the lack of detailed annotations of cancer regions,
previous studies applied domain-specific handcrafted features
to depict morphological character, texture, and statistic prop-
erty of malignant tumor [33], [34], [40] along with the
unsupervised clustering methods (e.g., K-means) and fea-
ture embedding for classification [41]. In addition, various
weakly supervised methods, such as multiple instance learning
(MIL) [42], [43], have been adopted to address this problem
by automatically extracting the refined valuable information
from coarse-labeled patches [44]–[50]. Handcrafted features
(e.g., color histogram, local binary pattern, and SIFT) are
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also extensively studied in these MIL methods [44]–[46],
which actually require considerable efforts to design and val-
idate. Recently, an MIL framework [48] utilized sparse label
assignment in supervised training to classify the entire mam-
mogram of breast cancers with size of about 3000 × 2000.
However, this idea cannot easily generalize to WSIs since
the latter is along with a much larger resolution. In the
Camelyon Grand Challenge 2016 (CAMELYON16) [17], [18],
hundreds of carefully annotated WSIs are provided to train
a fully supervised deep network for automatically detecting
the metastatic breast cancer in WSIs. However, the acquisi-
tion of careful annotation of WSI in a large scale is fairly
prohibitive, if not impossible, in practice as it usually takes
several hours to well annotate a WSI for a specialized pathol-
ogist. Therefore, it would be appealing to train the cancer
region detector with a minimum annotation (e.g., image-level
labels) [35], [36], [38] which can be more easily acquired
in clinical practice. Xu et al. [35] used CNN activations
trained by ImageNet to extract off-the-shelf features in a patch-
wise fashion, followed by feature embedding to represent
the WSI. Since these features are quite generic with lim-
ited specific presentation, this method could not succeed in
complicated tasks. Lately, an EM-based method proposed by
Hou et al. [36] was the first to combine the patch-based CNN
with supervised decision fusion. Initially, an EM-based method
with CNN was used to identify the discriminative patches in
WSIs; then, a count-based feature fusion model performed the
image-level prediction. Although this method has been verified
effective on two WSI datasets, it marginally exceeded other
fundamental methods at the cost of huge computation on the
iteration of training and inference [36]. Moreover, a study [39]
recently achieved fairly inspiring results on nonsmall cell
lung cancer WSIs classification by using Inception-V3 [51]
network; however, this success was under the condition of
good-quality WSIs.

Overall, the existing approaches solving these WSI-level
tasks either highly depend on elaborated delineation of tumor
regions to provide the annotation masks or require careful
design of handcrafted features, which actually pose a heavy
burden to histopathologists and researchers, respectively. In
order to overcome the aforementioned challenges, in this arti-
cle, we propose a weakly supervised learning method for fast
and effective classification of whole slide lung cancer images
with a minimum annotation effort from pathologists. First, our
method merely requires image-level labels and a small num-
ber of coarse annotations that are readily obtained in practice,
which significantly saves a lot of labor cost on annotations.
Second, a powerful FCN is adopted to automatically learn the
representative features which are much superior to the hand-
crafted ones. The major contributions of this article are as
follows.

1) We develop a novel approach addressing the lung cancer
WSI classification problem. To the best of our knowl-
edge, this is the first study that explores the weakly
supervised learning on WSI classification with image-
level labels as well as a small number of coarse annota-
tions. We take advantage of FCN for efficient prediction
and extracting useful deep features and propose several

context-aware block selection and feature aggregation
strategies.

2) We build the largest fine-grained whole slide lung cancer
histopathology image dataset, composed of 939 WSIs.
This dataset contains comprehensive types of lung car-
cinoma (i.e., two subtypes of nonsmall cell lung cancers
and small cell lung cancer) and the normal type.

3) The proposed method achieves the state-of-the-art
performance on two independent datasets. Extensive
experiments on our dataset demonstrate that the context-
aware block selection and WSI feature aggregation
from multiple instances can provide high-quality holistic
feature representation for WSIs. Our method achieves
an accuracy of 97.3% on our dataset and an AUC
of 85.6% on the public dataset from TCGA. Both
results outperform the previous methods by a large
margin.

II. METHODS

Due to intrinsic properties of whole slide histopathology
images (e.g., high resolution and heterogeneity of tumors),
it is hardly possible to tackle the WSI classification task
by one step, even a large number of careful annotations are
available [17], [18]. Fig. 2 shows the architecture of the
proposed method. It consists of three parts. The first part
is a patch-based CNN that aims to predict the cancer like-
lihood of WSIs, referred as discriminative patch prediction.
In the second part of the context-aware block selection, the
spatially contextual information is taken into consideration
when selecting the features from retrieved blocks. Finally,
we aggregate features from multiple representative instances
in the context-aware feature selection and aggregation part;
hence, each WSI can be represented by a global feature
descriptor that summarizes the most indicative information.
The global feature descriptor is eventually fed into a stan-
dard RF classifier for WSI-level prediction. This procedure
shares the similar idea of “vocabulary-based paradigm” [41] in
embedded-space MIL, referred as WSI feature aggregation and
classification.

A. Discriminative Patch Prediction

1) Preprocessing: In general, a WSI might contain a
large proportion (e.g., ranging from 40% to 80%) of white
background which is actually irrelevant for cancer analysis.
Removal of such noninformative regions could greatly reduce
the computational cost while ensuring the validity of training
samples. Hence, we apply OTSU algorithm [52], a traditional
method for image thresholding to eliminate the majority of
irrelevant background while maintaining the tissue regions for
training, as shown in Fig. 3. This process can be significantly
accelerated by using a multilevel mapping strategy that is
proposed in [18].

2) Fast Fully Convolutional Network and Efficient Training
Strategy: Efficiency is a key issue concerned in clinical prac-
tice. How to quickly process a gigapixel histopathology image
is one of the biggest challenges for researchers. Unlike [17],
[35], and [36], where CNN scans the entire image in a
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Fig. 2. Overview of the proposed method. (a) Discriminative patch prediction. A patch-based CNN is used to find discriminative regions. (b) Context-aware
feature selection and aggregation. By imposing spatial constraint, features from discriminative blocks are selected and aggregated for the WSI classification.

(a) (b)

Fig. 3. (a) Raw WSI and (b) segmented tissue regions denoted by blue
rectangles.

patchwise fashion, requiring lots of time at the inference
phase, we adopt a modified FCN, ScanNet [18], as the patch-
prediction model. This network can be flexibly trained with
extensively augmented samples in a patchwise way while it
can leverage the efficiency of an FCN architecture at prediction
phase, as illustrated in Fig. 4. The architecture of ScanNet
is based on a modified VGG-16 [23] network by replacing
the last three fully connected layers with fully convolutional
layers. It can enjoy the transferred features learned from a
large set of nature images [53]. In addition, all the padding
operations of convolutional layers in the standard VGG-16 are
removed to avoid the boundary effect of the FCN predictions.
Based on this modification, ScanNet can process blocks in an
arbitrary size fast by leveraging the advantage of FCN. Finally,
all probability tiles generated from blocks are stitched together
to form the probability map of WSIs.

During the training stage, training patches are generated on-
the-fly in the data preparation process, which could not only
save the memory space but also achieve flexible data aug-
mentation in the meanwhile. However, GPU is frequently idle

because a heavy I/O bottleneck occurs due to waiting for the
preparation of training samples. To alleviate this problem, we
adopt the asynchronous sample prefetching mechanism [18].
The producer/consumer scheme is implemented by multiple
processes. Specifically, several producer processes run on CPU
to generate training patches while only one consumer pro-
cess runs on GPU to consume the training samples. This
asynchronism breaks the dependency between the producer
and the consumer, which would bring a lot of performance
improvement in efficiency.

3) Weighted Loss Function for Weakly Supervised
Learning: There are at least two challenges for fully super-
vised learning of WSI analysis. First, it is quite difficult
and tedious to obtain accurately pixelwise annotations.
Second, there exist ambiguous regions that can not be well
distinguished, even for histology experts. However, making
use of a large number of available image-level labels and a
small number of coarsely annotated WSIs can be feasible in
practice. In this article, we are the first to explore weakly
supervised learning on WSI classification with image-level
labels as well as a small number of coarse annotations of
tumor regions. We require the pathologists to annotate the
abnormal regions in a scratch way by drawing polygons
as shown in Fig. 5. As the annotation is quite coarse (i.e.,
not all annotated areas are precisely occupied by tumor and
vice-versa), it is not safe to take all annotated regions as
positive patches, and nonannotated counterparts as negative
ones at the training stage. A more reasonable way is to
impose a larger weight on these annotated regions as they
carry more confidence for manifestation of being carcinoma.
In other words, more severe penalty is given when the CNN
misclassifies annotated regions, which guides the CNN to
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Fig. 4. Illustration of fast patch prediction with ScanNet.

Fig. 5. Illustration of coarse annotations by experienced histopathologists.
Green lines with blue dots are the coarse annotations from histopathologists
and majority of them are correctly annotated. Note that the orange circles
denote cancer regions that are not annotated while the red circles indicate
noncancer regions that are enclosed in annotations.

learn more useful and discriminative patterns. Specifically,
we train a patch-based CNN by minimizing the following
weighted cross-entropy loss function:

L =
∑

x∈M

C∑

�=1

−αy
�

log P(q = �|x;W, b)

+
∑

x/∈M

C∑

�=1

−y
�

log P(q = �|x;W, b) + λ‖W‖2
2 (1)

where θ = {W, b} denotes the parameters of our CNN model,
P(q = �|x) is the output probability for the �th class given the
input subwindow x in which q ∈ {1, 2, . . . , C}, and y

�
corre-

sponds to the WSI-level label. C is the total number of classes.
M denotes the coarse annotation mask set. α is the balance
weight between annotated region classifier and nonannotated
region classifier. In this article, a range of values of α ∈ [1, 5]
have been considered, while α is eventually set as 2 by grid
search. Moreover, λ controls the tradeoff between the data loss
term and regularization term.

Fig. 6. Simplified example of a block with 3 × 3 overlapped patches.

B. Context-Aware Block Selection

We hypothesize that patches with higher predicted proba-
bility for a specific class are more likely to be true. Thus,
the features extracted from such regions would be more reli-
able than those from regions with lower probability. Previous
study [36] utilized all the discriminative patches and the cor-
responding features. However, this method always leads to
feature redundancy during inference as CNN densely slides
over the WSI and patches share the overlapped regions with
their neighbors. On the other hand, due to the heterogeneity of
histopathological characteristics, there exist outliers or mimics
having high probabilities in WSIs. They usually exert a neg-
ative effect on the quality of subsequent WSI holistic feature
representation, which eventually degrade the performance of
image-level classification.

In order to tackle the aforementioned issues, we take the rich
contextual information into account for better feature selection.
Here, a block refers to a large grid that consists of a number
of overlapped patches as shown in Fig. 6, then a WSI can
be regarded as a composition of many blocks. In general, a
tumor area has a larger size than a patch does, resulting in
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high probability scores appearing in a concentrated region. In
other words, the average probability of tumor region would
certainly be high. On the contrary, even if an outlier carrying
a high probability value falls in a normal tissue block, it is
easy to be filtered out due to the low average probability of
such a block. Explicitly, we denote a block as

A =

⎡

⎢⎢⎢⎣

I1,1 I1,2 . . . I1,n

I2,1 I2,2 . . . I2,n
...

...
...

...

In,1 In,2 . . . In,n

⎤

⎥⎥⎥⎦

where n is the number of overlapped patches in each row (col-
umn), and Ii,j is the patch located at the ith row and the jth
column in block A, where i, j ∈ {1, 2, . . . , n}. Specifically, the
size of the block is: Lb = Lp+Sp×(n−1), where Lp represents
the patch size and Sp is the patch stride [the distance between
two adjacent patches in the same row (column)], which are
244 and 32, respectively, according to the architecture of the
network shown in Fig. 4. In fact, the Sp is determined by the
overall downsampling rate of FCN. During inference, for each
patch Ii,j, the FCN outputs a feature embedding fi,j ∈ R

1024

from the penultimate convolutional layer and a probability vec-
tor pi,j = (p1

i,j, p2
i,j, . . . , pC

i,j) from the last layer, where p�
i,j

means the probability score of patch Ii,j for the �th class. For
each class �, the average probability within a block is calcu-
lated by p� = (1/n2)

∑n
i=1

∑n
j=1 p�

i,j, which is used to identify
the discriminative block by judging whether it exceeds a cer-
tain threshold τ . It is worth noting that in practice, we take
blocks as inputs that go through the trained FCN directly for
better efficiency and convenience; then, the resulting probabil-
ity maps are averaged to obtain the average probability values.
The hyperparameters are determined by cross-validation, that
is, τ = 0.3, Lb = 884, and n = 21.

C. WSI Feature Aggregation and Classification

A good holistic feature descriptor is essentially required
to classify a WSI. Intuitively, it should integrate the global
information from all cancer types and noncancer type. We
call them positive evidence and negative evidence, respec-
tively. Specifically, the positive evidence can well support the
existence of cancer class that is consistent with the ground-
truth label. In contrast, the negative evidence can manifest the
absence of any other classes.

The general procedure to obtain the holistic representation
of WSI consists of three-stage feature aggregations. First of
all, we perform feature aggregation within each discrimina-
tive block. This can be regarded as patch-level feature fusion.
The outcome of this phase is called block descriptor which
is supposed to represent one block. Afterward, we fuse the
information of all discriminative blocks to obtain the specific
class feature, which is called class descriptor. It can sup-
port the existence or absence of a certain class. Eventually,
all class descriptors are concatenated together to interpret the
WSI, which is referred as global descriptor.

1) Block Descriptor: In the first stage, there are three dif-
ferent strategies to aggregate features within a discriminative
block. The first approach is called MaxFeat, which takes the

feature f of the patch with the highest probability as the
block descriptor

B� = fi∗,j∗ s.t.
(
i∗, j∗

) = arg max
i,j

p�
i,j (2)

where B� ∈ R
1024 denotes the block descriptor for the class �.

The second strategy is the fusion of all patch-level features
with equal contributions, called AvgFeat

B� = 1

n2

n∑

i=1

n∑

j=1

fi,j. (3)

Similarly, the last strategy considers all features within the
same block, but the contribution of each individual patch-level
feature to the block descriptor is directly proportional to its
probability score. This strategy is referred as WeightFeat as
follows:

B� =
n∑

i=1

n∑

j=1

p�
i,jfi,j. (4)

2) Class Descriptor: In the second stage, we try two
approaches to aggregate block descriptors to obtain the class
descriptor. One is to simply take average of all the dis-
criminative block descriptors as the class descriptor, called
Mean-pool

C� = 1

N

N∑

k=1

B�
k (5)

where C� ∈ R
1024 represents the class descriptor for the class

�, and N denotes the number of discriminative blocks of the
class �. The other method is 3-norm pool [54] as depicted
in (6), denoted by Norm3, which is also utilized in [35] to
aggregate features

C� =
(

N∑

k=1

(
B�

k

)3
) 1

3

. (6)

In such a way, all class descriptors could have the same
dimension.

3) Global Descriptor: All the class descriptors are con-
catenated together to generate the global descriptor G =
{C1, C2, . . . , CC}. The detailed processes of feature selec-
tion and aggregation are illustrated in Fig. 7 and Fig. 2(b)
accordingly. Finally, the global descriptors with good holis-
tic representation are fed into a standard RF classifier for
WSI-level predictions.

III. EXPERIMENTS AND RESULTS

In this article, two datasets are utilized to evaluate the
performance of the proposed method. The relevant information
and the corresponding results are as follows.

A. Experiments on SUCC Dataset

1) Dataset and Preprocessing: First, we constructed
a large-scale dataset in collaboration with Sun Yat-sen
University Cancer Center (SUCC), State Key Laboratory of
Oncology in South China. This dataset contains comprehen-
sive lung cancer classes and it is composed of 939 digitalized
histology WSIs collected from 871 lung cancer patients and 68
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Fig. 7. Context-aware feature selection. A block, larger than a patch, with size Lb × Lb is regarded as discriminative only if its average probability exceeds
a certain threshold τ . Then features are extracted from this block according to different strategies, for example, MaxFeat.

TABLE I
DATA DISTRIBUTION OF SUCC DATASET

healthy subjects. Eight hundred and seventy one lung cancer
WSIs are further diagnosed into three fine-grained categories
of lung carcinoma, that is, SC, ADC, and small-cell lung car-
cinoma (SCLC) with 361, 390, and 120 WSIs accordingly,
as shown in Fig. 1. All WSIs are obtained by using a Leica
Aperio AT2 scanner at a 4× magnification with 0.25 μm/pixel
resolution, and are stored in multiple zoom levels (3 or 4) with
a pyramid-like structure. At the finest magnification, the WSIs
come with an average size of 74 000 × 76 000 pixels. Within
this dataset, merely 59 images were nonexhaustively annotated
by a panel of experienced pathologists as illustrated in Fig. 5.

This dataset is divided into different groups as shown in
Table I. We consider 59 annotated images as D1. Besides,
the remaining 812 cancer images carrying the WSI-level label
only are further split into 642 (D2) and 170 (D4) images
for training and testing, respectively. Analogously, noncancer
[normal (NORM)] WSIs are also divided into two parts con-
taining 53 (D3) and 15 (D4) images for training and testing
accordingly.

Considering that processing the images at the finest magnifi-
cation level would be intractable due to the huge computation,
we downsampled each WSI by a factor of 4 to the resolution of
1 μm/pixel during preprocessing. To enrich the training set, we
applied several data augmentation techniques, including rota-
tion, translation, flipping, and color jittering. Specifically, we
first cropped a larger size tile at a random scaling ratio within
the tissue region in the WSI, followed by a horizontal or ver-
tical flipping with a fixed probability (i.e., 0.25). Afterward,
random rotation with a degree ranging from 0 to 360 was
applied. Then, we cropped the tile to have the desirable dimen-
sion (244 × 244 × 3). Finally, color jittering was employed in
R, G, and B channel, respectively.

2) Experimental Settings:
a) Configuration of training datasets:

1) M1: In this experiment, D1 (59 cancer WSIs) and D3 (53
noncancer WSIs) are used for patch-based CNN training.

All patches extracted from D1 and D3 only convey the
WSI-level labels. Note that the coarse annotation masks
are not utilized during the CNN training.

2) M2: It is quite similar to M1 except that the weighted
loss function is employed during training, which gives
higher penalty to patches extracted from the annotated
regions.

3) M3: The training set consists of D1, D2, and D3 (i.e.,
701 cancer images and 53 noncancer images). Note that
the coarse annotation masks are not utilized during the
CNN training.

4) M4: Analogous to M3, M4 utilizes the same train-
ing data: D1, D2, and D3. The only difference is that
weighted loss function is applied to use the coarse
annotations.

b) Configuration of feature aggregation methods: We
implement different feature aggregation methods that are com-
monly used in the previous works to obtain the image-level
prediction of each WSI.

1) MajorityVoting: We employ the CNN on the testing WSI
and obtain a score map. The prediction of each location
votes to the four classes and we take the category with
majority vote as the prediction for the image.

2) AveragePooling: We calculate the average probability
of the locations on the test WSI score map for each
class channel. The category with the highest average
probability is taken as the image-level prediction.

3) MaxPooling: We select the maximum probability of the
locations on the test WSI score map for each class
channel. The category with the highest max-pooling
probability is taken as the image-level prediction.

4) Count-Based RF: We count the numbers of all cancer
types and noncancer type prediction in test WSI score
map to form a prediction histogram of classes. The four-
bit histogram is fed into an RF classifier for the image-
level prediction.

5) Component-Based RF: For each test WSI score map,
the connected component with the largest area for each
class is chosen as the ROI. Then, we obtain different
features of this ROI, including maximum probabil-
ity, average probability, area, eccentricity, convex area,
orientation, extent, equivalent diameter, solidity, major
axis length, minor axis length, and perimeter. Finally,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

TABLE II
IMPACT OF α IN WEIGHTED LOSS FUNCTION ON

CLASSIFICATION PERFORMANCE

an RF classifier takes the feature vector as input to get
the final prediction.

6) CNN-AvgFeat-MeanPool-Based RF, CNN-WeightedFeat-
MeanPool-Based RF, CNN-MaxFeat-MeanPool-Based
RF: Our proposed feature aggregation methods,
AvgFeat, WeightedFeat, and MaxFeat, are used sepa-
rately to obtain block descriptors; then, the Mean-pool
is utilized to fuse block descriptors to obtain the class
descriptor. After feature aggregation, an RF gives the
WSI-level prediction based on the global descriptor.

7) CNN-AvgFeat-Norm3-Based RF, CNN-WeightedFeat-
Norm3-Based RF, CNN-MaxFeat-Norm3-Based RF:
Similarly, AvgFeat, WeightedFeat, and MaxFeat are used
to generate block descriptors, respectively; then, 3-norm
pool is adopted to aggregate block descriptors to obtain
the class descriptor. After feature aggregation, an RF
gives the WSI-level prediction based on the global
descriptor.

3) Quantitative Evaluation: We employ accuracy as the
evaluation criterion for this multiclass WSI classification task.
We apply different training strategies with different block
selection and feature aggregation methods as ablation studies
to evaluate the contribution of each crucial component within
our framework.

At first, to investigate the impact of the value of the hyper-
parameter α in the weighted loss function on WSI analysis, we
utilize the weighted loss function with different values of α to
train the network. Note that when α = 1, no weight is imposed
on annotations and each training patch contributes equally to
the loss. With respect to each value of α, we apply four-fold
cross-validation on 400 WSIs from our training set (D1, D2,
and D3). In other words, the 400 WSIs are randomly split into
four equal sized groups. Of the four groups, a single group
is retrained as the validation set for testing the model, and
the remaining three groups are used to train the model. This
process is repeated four times. For each validation set, we cal-
culated the mean accuracy (meanACC) of our proposed feature
aggregation strategies (the last six methods in Table III). Then,
we take the average of meanACCs from all validation sets as
the final result (avgACC), as shown in Table II. Apparently,
results of the weighted loss function (α ≥ 2) are better than
that of the classical cross-entropy loss function (α = 1). It
indicates that emphasizing weight on annotations can boost
the performance. As the value of α increases, it achieves the
peak performance when α = 2, but a drop is observed when
α becomes larger. Therefore, we fix the value of α as 2 for
the following experiments.

Once the optimum value of α is determined, we carry a thor-
ough analysis on the SUCC dataset. The experimental results
are listed in Table III. As for the first three simple prediction

TABLE III
RESULTS ON THE SUCC DATASET WITH DIFFERENT

EXPERIMENTAL SETTINGS

TABLE IV
CONFUSION MATRIX OF WSI CLASSIFICATION RESULT

strategies, MajorityVoting, AveragePooling, and MaxPooling,
the performance is not very competitive. The reason behind
could be that these methods only rely on instances so that they
are in lack of effective holistic information of WSIs. Besides,
there is no gain of improvement by adding more training sam-
ples as these methods are quite sensitive to outliers, which can
degrade the performance. With respect to Count-based RF and
Component-based RF, there is a considerable boost on accu-
racy. These two methods integrate information from instances
and create a global feature vector for the second-stage classi-
fier, so they are more robust to output the WSI-level prediction.
Inspiringly, context-aware CNN feature selection and aggre-
gation methods outperform the preceding methods by a large
margin, because not only the feature of multiple instances is
used but also rich spatial information is taken advantage of.
It is validated that the features learned by CNN are more rep-
resentative than count-based histogram and component-based
features. We can observe that the CNN-MaxFeat-Norm3-based
RF classifier achieves the best result among all the WSI-level
prediction strategies with the training setting M4. In addition,
we can also notice that a small number of coarse annotations
(M4) can contribute to the accuracy improvement compared
to that without coarse annotations (M3).

With a closer observation of the predictions of each class as
shown in the confusion matrix in Table IV (obtained by M4-
CNN-WeightedFeat-Norm3-based RF), we can see that there
are very few misclassifications within each class (i.e., only
1, 2, 1, and 1 misclassified WSI(s) for SC, ADC, SCLC, and
NORM, respectively). Notably, no cancer WSIs are misclas-
sified as normal, and it is very critical in clinical practice.
Inspiringly, we achieve the Cohen’s Kappa k = 0.958,
reaching fairly good agreement with the histopathologists.
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TABLE V
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

THE SUCC DATASET

We further implemented two state-of-the-art weakly super-
vised learning methods on WSI analysis for comparison. One
is the EM-based CNN with a supervised decision fusion
model proposed by Hou et al. [36]. In this approach, an
EM-based CNN is used to iteratively eliminate the nondiscrim-
inative patches. Then, the class histogram of the patch-level
predictions is taken as the input to an SVM with radial basis
function kernel to predict the image-level label. The other
is a CNN activation feature-based method [35]. Each WSI
is divided into a set of patches (336 × 336) that have 25%
overlap with adjacent patches. Then, all patches are resized
into 224 × 224 as the input of VGG-16 that is pretrained on
ImageNet for feature extraction. Then, the 3-norm pooling is
used to aggregate all features and feature dimension reduction
is applied to remove irrelevant features. Finally, a linear SVM
classifier outputs the WSI-level prediction. From Table V, we
can see that our methods overwhelm these two approaches
significantly.

It is known that the off-the-shelf features extracted by CNN
pretrained on other domain are quite generic, so Pretrained-
Feature-Norm3 [35] fails to achieve high accuracy. It implies
that fine-tuning with histopathology images is necessary for
CNN to learn more useful discriminative patterns. On the
other hand, although EM-CNN-SVM [36] trains a patch-based
CNN iteratively and employs the count-based histogram as the
global feature at the second-stage classifier, the class histogram
is less representative than the deep features learned by CNN.
Obviously, our success primarily owes to the representative
features from CNN in conjunction with context-aware feature
selection and aggregation strategies since the quality of the
global descriptor representing a WSI is crucial for WSI-level
classification.

4) Qualitative Evaluation:
a) Discriminative region detection: Albeit our ultimate

task is not tumor detection, our method can achieve such
a goal simultaneously by retrieving the most discriminative
regions. We invite a specialized pathologist to delineate the
discriminative regions elaborately on a few testing WSIs. The
results are depicted in Fig. 8. Here, Fig. 8(a) and (b) shows
the WSI and ground truth (red regions in Fig. 8(b) denote
carcinoma regions in cancer WSIs or normal tissue in the
normal WSI) respectively, followed by heatmaps generated
from CNN with the training setting M3 and M4 in Fig. 8(c)
and (d) accordingly. Note that the first three rows are can-
cer cases, and the last row is a normal case. Clearly, despite
that the patch-based CNN could learn discriminative patterns
from WSIs without the aid of annotation information (M3),
it sometimes fails to find the most discriminative regions,

(a) (b) (c) (d)

Fig. 8. Visualization of discriminative region detection. (a) WSI. (b) Ground
Truth. (c) M3: Heatmap. (d) M4: Heatmap.

which might lead to feature deficiency for the positive evi-
dence. On the contrary, robustness is obviously improved
by using only a handful of annotations. The heated regions
found by M4 is more consistent with the annotation from the
pathologist. These visualization results validate that our system
makes the diagnosis decisions based on really discriminative
regions.

b) Feature embedding visualization: In order to evaluate
the effect of different training data sources on global features
of WSIs, we project those global features onto a 2-D space for
visual comparison with t-distributed stochastic neighborhood
embedding (t-SNE). In Fig. 9(a), results are obtained via VGG-
16 network pretrained on ImageNet [35] while Fig. 9(b) shows
our results from ScanNet training on lung cancer WSIs. It can
be clearly seen from Fig. 9(b) that the proposed method dis-
tinctively maximizes the distance among different interclasses.
Besides, although there are some hard samples near the deci-
sion boundary which are difficult to be identified correctly
in Fig. 9(b), most of WSIs belonging to the same category
form an individual cluster, indicating that the holistic fea-
ture representation obtained by our method is very helpful for
image-level classification even using the standard RF classifier.

c) Failure cases analysis: There are a few failure
cases misclassified by our method as illustrated in Fig. 10.
Apparently, the patch-based CNN does not manage to retrieve
the discriminative regions, which eventually leads to inappro-
priate global representation of the WSI. Failure cases may be
due to the following reasons. First, both misclassified ADC
and SC images belong to poorly differentiated cancer types.
That means the morphological patterns of carcinoma within
these WSIs might be ambiguous, so that the patch-based CNN
is highly likely to misidentify such cancer areas. Second,
within misclassified lung cancer WSIs, valid cancerous regions
might occupy only a very small part, whereas normal areas
dominate the entire image. The misclassified normal WSI has
distinct structural features compared to other normal ones,
leading to the misclassification.
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(a) (b)

Fig. 9. 2-D projection of the holistic features used for second-stage classifier obtained from (a) pretrained VGG-16 network and (b) ScanNet trained on lung
cancer WSIs with easier feature separation among interclasses. Best view in color.

(a)

(b)

Fig. 10. Failure cases. (a) Upper panel denotes the entire slide images of
different categories, ADC, SCLC, NORM, and SC, respectively. (b) Bottom
panel shows the corresponding discriminative regions output by ScanNet
with M4.

B. Experiments on TCGA Dataset

1) Dataset and Configurations: To verify the efficacy and
generalization of the proposed method, we also conducted
experiments on a publicly available lung cancer WSI dataset
from the The Cancer Genome Atlas (TCGA).1 We used 500
WSIs in good quality from the Genomic Data Commons
database, composed of 250 ADC images and 250 SC images.
We random split the dataset into training set and testing
set, with 400 WSIs and 100 WSIs, respectively. There are
equal numbers of two classes in training or testing set. Due
to the deficiency of the annotations of the tumor regions in
this dataset, the typical binary cross-entropy loss function is
adopted to train the ScanNet. In addition, we employ accu-
racy and area under the receiver operating characteristic curve
(AUC) as the evaluation criteria for this binary classification
problem.

The experimental results are reported in Table VI, along
with the comparison to the state-of-the-arts. Encouragingly,
our proposed approach outperforms these methods consider-
ably achieving the best performance on the two metrics with
5% and 4% gain on accuracy and AUC compared to EM-
CNN-Fea-SVM [36] and with 5% and 2.4% gain on accuracy
and AUC compared to Pretrained-Feature-Norm3 [35].

1https://portal.gdc.cancer.gov/

TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

THE TCGA DATASET

C. Implementation Details and Computation Cost

Our method was implemented with Python based on the
open-source deep learning library Tensorflow on a worksta-
tion equipped with 3.5-GHz Intel Core i7-5930K CPU and
two GPUs of Nvidia GeForce GTX Titan X. At the train-
ing phase, the network randomly cropped tiles from the WSI
with the dimension of at least

√
2 larger than the training

patch size, which could guarantee that the following arbitrary-
degree rotation would not result in invalid region appearing in
the training patches. While in the inference stage, the FCN
densely scanned the WSI, where the block size was set as
884 × 884 and the outcomes of a block were a 21 × 21 × C
probability tile and a 1024-bit feature vector. For the SUCC
and TCGA datasets, C was 4 and 2, respectively. In order to
avoid the boundary effect, the FCN scanned the WSI with a
stride of 32 × 21, where 32 was the total downsampling rate
by ScanNet and 21 was the edge length of the probability tile.
Ultimately, all probability tiles generated from blocks were
stitched together to obtain the probability map of WSIs.

The network was trained with stochastic gradient descent
method [55]. We set the batch size as 100 and the learning
rate as 0.0001 initially and then decreased gradually by a factor
of 10 every 10 000 iterations. The parameters were randomly
initialized from a Gaussian distribution (μ = 0, σ = 0.01) and
updated by a standard backpropagation.

Efficiency is a key factor for WSI analysis, hence, we inves-
tigate the speed of our method. In general, it took about 100 s
to process one WSI with the dimension of 20 500 × 19 500
(1 μm/pixel), which achieved more than hundreds of time
faster than the traditional patchwise classification framework
with the same stride. Considering the increasing number of
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large-scale WSIs, the promising efficiency implies a great
potential of our method in clinical practice.

IV. DISCUSSION

Histopathology plays an essential role in cancer diagnosis
and serves as the gold standard in many medical protocols.
However, the examination of whole slide histopathology image
is always the bottleneck for in-time treatments. Especially,
in some developing countries (e.g., China), the supply of
histopathologists severely falls short of demand, therefore,
most of the histopathologists have to bear the heavy burden
and cancer patients cannot be treated timely. Hence, auto-
mated analysis of histopathology is highly welcome to ease the
workload and address the issue of medical manpower shortage
on underserved populations and areas. Unlike tumor detection
and segmentation tasks where a large number of pixelwise
annotations are provided for researchers to design fully super-
vised learning algorithms, the WSI classification problem is
much more challenging since only image-level labels are avail-
able in most cases. In addition, tumor regions are generally
sparsely distributed in the entire image, mingling with a large
proportion of noncancer regions, which results in more diffi-
culties. Consequently, the ground-truth label of each individual
patch extracted from the WSI is somehow ambiguous. Another
notoriously tough issue in histopathology image analysis is
ascribed to the large variation of tissue appearance. Even
for the same type of carcinoma/noncancer, the morphological
structures and textures are of great diversity, which is actually
one of the major stumbling blocks to design a robust auto-
mated analysis tool. Although significant achievements have
been realized in the past few years, many problems still remain
unsolved. Most of the previous traditional weakly supervised
learning methods (e.g., MIL-based techniques) are developed
upon a great number of handcrafted features, which largely
restrain their generality and transferability. In addition, cur-
rent accessible public datasets of lung cancer WSIs (e.g., The
TCGA cohort) merely contain ADC and SC classes, which def-
initely impede the development of a comprehensive multiclass
classifier that is highly demanded in clinical practice.

Most of the aforementioned issues have been well tack-
led in this article. At first, a comprehensive dataset SUCC
is built to satisfy the underlying requirement of identification
for different lung cancer subtypes. Based upon this dataset,
we propose a novel weakly supervised learning approach
to address the WSI classification problem by exploring the
deep learning feature selection and aggregation. The weighted
loss function, to the best of our knowledge, is the first trial
that exploits weakly supervised learning on WSI classification
using image-level labels as well as a small number of coarse
annotations. To incorporate rich spatial information, we pro-
pose different strategies, for example, AvgFeat, WeightedFeat,
and MaxFeat for block descriptor, and MeanPool and Norm3
for class descriptor, to obtain the holistic feature representa-
tion of WSI. Extensive experiments performed on two datasets
(SUCC and TCGA) verify the effectiveness of our method. It
surpasses other two weakly supervised learning methods by a
significant margin.

Inherently, our method falls into the cohort of weakly
supervised learning method, due to scarcity of elaborated
delineation of cancer regions. Although our proposed weighted
loss function demonstrates significant improvements, the anno-
tated regions can be noisy along with majority of annotations
being correct as illustrated in Fig. 5. It would be quite tedious
for pathologists to indicate the noisy regions in a manual way.
Furthermore, it might be extremely challenging for patholo-
gists to discriminate ambiguous regions. Therefore, how to
automatically select training samples with real ground-truth
labels and eliminate noisy regions in the training process
would be a very promising direction to improve the accuracy.
We will explore this direction in the future work.

Although our method achieved fairly good results in the
experiments, there are still some space for further improve-
ment. First, the feature embedding of patches for the holistic
descriptor is little complicated as a number of hyperparame-
ters need to be determined. Automated feature selection and
aggregation by adaptive learning would be more straightfor-
ward and attractive in the future. In addition, the framework
in our method is not an end-to-end pipeline, where the fea-
ture assembling and classification are two individual modules.
In the future work, we would replace the RF classifier with
MLP classifier to make it end-to-end. Besides, the proposed
method still could not properly deal with ambiguous regions
in WSIs due to complex technique variations (e.g., varia-
tions of color/texture) and biological heterogeneities (e.g., cell
type and cell state) that are always present in a large cohort.
Furthermore, we plan to use more lung cancer datasets to
validate the generalization capability of the proposed weakly
supervised learning method.

V. CONCLUSION

In this article, we proposed a weakly supervised learning
method to address the whole slide lung cancer image classifi-
cation problem with minimum annotation effort. The exploited
FCN can efficiently generate cancer likelihood that helps to
retrieve discriminative regions. Besides, deep learning fea-
tures extracted by CNN are the ideal substitute of handcrafted
features. We proposed different context-aware block selection
and feature aggregation strategies to obtain an effective holis-
tic feature representation of the WSI. In order to validate
the efficacy of the proposed method, we first constructed the
largest fine-grained lung cancer WSI dataset SUCC for com-
prehensive analysis, and then evaluated our method on a public
lung cancer WSIs dataset from TCGA. Extensive experiments
corroborated the superiority of the proposed method which
outperformed the state-of-the-art methods significantly on two
datasets. We believe that the proposed method can alleviate the
bottleneck of expert annotation cost and advance the progress
of computer-aided histology image analysis.
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